DoWhy | Making Causal Inference Easy
Contents:
DoWhy | 让因果推断容易
DoWhy:一个简单例子
相关性还是因果效应?
DoWhy: 因果效应估计方法
用 DoWhy 和 EconML 估计条件平均因果效应
DoWhy 因果 API Demo
Do-sampler 简介
Different ways to load an input graph
工具变量法估计因果效应
IHDP 因果效应估计
Lalonde 数据集上因果推断
Lalonde Pandas API Example
Code repository & Versions
dowhy package
DoWhy | Making Causal Inference Easy
Docs
»
<no title>
View page source
Example Notebooks
Contents:
DoWhy:一个简单例子
建立因果模型
Interface 1: 输入因果图(recommended)
Interface 2: 指定共同原因和工具变量
稳健性分析
Adding a random common cause variable
Adding an unobserved common cause variable
Replacing treatment with a random (placebo) variable
Removing a random subset of the data
相关性还是因果效应?
数据集
Does Treatment cause Outcome?
STEP 1: Model the problem as a causal graph
STEP 2: Identify causal effect using properties of the formal causal graph
STEP 3: Estimate the causal effect
Step 4: Refuting the estimate
DoWhy: 因果效应估计方法
方法1:回归
方法2:分层
方法3:匹配
方法4:加权方法
方法5:工具变量法
方法6:断点回归法
用 DoWhy 和 EconML 估计条件平均因果效应
线性模型
EconML 方法
CATE Object 和置信区间
New inputs 的因果效应
Works with any EconML method
Continuous treatment, Continuous outcome
Binary treatment, Binary outcome
工具变量法
Metalearners
Refuting the estimate
Random
Adding an unobserved common cause variable
Replacing treatment with a random (placebo) variable
Removing a random subset of the data
DoWhy 因果 API Demo
获得因果模型和数据
对比线性回归模型
Do-sampler 简介
Pearlian 干预
Statefulness
Integration
Specifying Interventions
Demo
Different ways to load an input graph
Loading GML graphs
Loading DOT graphs
工具变量法估计因果效应
IHDP 因果效应估计
1.Model
2.Identify
3. Estimate (using different methods)
3.1 Using Linear Regression
3.2 Using Propensity Score Matching
3.3 Using Propensity Score Stratification
3.4 Using Propensity Score Weighting
4. Refute
4.1 Adding a random common cause
4.2 Using a placebo treatment
4.3 Data Subset Refuter
Lalonde 数据集上因果推断
Run DoWhy analysis: model, identify, estimate
Sanity check: compare to manual IPW estimate
Lalonde Pandas API Example
获得数据
do
算子
因果效应估计
Specifying Interventions